MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeq2i Unicode version

Theorem neeq2i 2744
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypothesis
Ref Expression
neeq1i.1
Assertion
Ref Expression
neeq2i

Proof of Theorem neeq2i
StepHypRef Expression
1 neeq1i.1 . . 3
21eqeq2i 2475 . 2
32necon3bii 2725 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  =wceq 1395  =/=wne 2652
This theorem is referenced by:  neeq12iOLD  2747  neeqtri  2755  suppvalbr  6922  disjdsct  27521  divnumden2  27609  nosgnn0  29418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-cleq 2449  df-ne 2654
  Copyright terms: Public domain W3C validator