![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > neeq2i | Unicode version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 |
Ref | Expression |
---|---|
neeq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 | |
2 | 1 | eqeq2i 2475 | . 2 |
3 | 2 | necon3bii 2725 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
=/= wne 2652 |
This theorem is referenced by: neeq12iOLD 2747 neeqtri 2755 suppvalbr 6922 disjdsct 27521 divnumden2 27609 nosgnn0 29418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-cleq 2449 df-ne 2654 |
Copyright terms: Public domain | W3C validator |