![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > negsub | Unicode version |
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negsub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 9831 | . . . 4 | |
2 | 1 | oveq2i 6307 | . . 3 |
3 | 2 | a1i 11 | . 2 |
4 | 0cn 9609 | . . 3 | |
5 | addsubass 9853 | . . 3 | |
6 | 4, 5 | mp3an2 1312 | . 2 |
7 | simpl 457 | . . . 4 | |
8 | 7 | addid1d 9801 | . . 3 |
9 | 8 | oveq1d 6311 | . 2 |
10 | 3, 6, 9 | 3eqtr2d 2504 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 (class class class)co 6296
cc 9511 0 cc0 9513 caddc 9516 cmin 9828 -u cneg 9829 |
This theorem is referenced by: negdi2 9900 negsubdi2 9901 resubcli 9904 resubcl 9906 negsubi 9920 negsubd 9960 submul2 10022 mulsub 10024 divsubdir 10265 elz2 10906 zsubcl 10931 qsubcl 11230 rexsub 11461 fzsubel 11748 ceim1l 11974 modcyc2 12032 expsub 12213 binom2sub 12285 seqshft 12918 resub 12960 imsub 12968 cjsub 12982 cjreim 12993 absdiflt 13150 absdifle 13151 abs2dif2 13166 subcn2 13417 efsub 13835 efi4p 13872 sinsub 13903 cossub 13904 demoivreALT 13936 dvdssub 14026 modgcd 14174 gzsubcl 14458 psgnunilem2 16520 cnfldsub 18446 itg1sub 22116 plyremlem 22700 sineq0 22914 logneg2 23000 ang180lem2 23142 asinsin 23223 atanneg 23238 atancj 23241 atanlogadd 23245 atanlogsublem 23246 atanlogsub 23247 2efiatan 23249 tanatan 23250 cosatan 23252 atans2 23262 dvatan 23266 wilthlem1 23342 wilthlem2 23343 basellem8 23361 lgsvalmod 23590 gxsuc 25274 gxadd 25277 gxsub 25278 vcsubdir 25449 cnnvm 25588 cncph 25734 hvsubdistr2 25967 lnfnsubi 26965 zetacvg 28557 subfacval2 28631 bpoly2 29819 bpoly3 29820 itg2addnclem3 30068 pellexlem6 30770 pell14qrdich 30805 rmxm1 30870 rmym1 30871 zlmodzxzequap 33100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 df-sub 9830 df-neg 9831 |
Copyright terms: Public domain | W3C validator |