MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neirr Unicode version

Theorem neirr 2661
Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
neirr

Proof of Theorem neirr
StepHypRef Expression
1 eqid 2457 . 2
2 nne 2658 . 2
31, 2mpbir 209 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  =wceq 1395  =/=wne 2652
This theorem is referenced by:  neldifsn  4157  cantnfOLD  8155  ac5b  8879  1nuz2  11186  dprd2da  17091  dvlog  23032  legso  23985  hleqnid  23992  usgranloop0  24380  frgra2v  24999  0ngrp  25213  signswch  28518  signstfvneq0  28529  linedegen  29793  prtlem400  30611  rmsupp0  32961  lcoc0  33023  padd01  35535  padd02  35536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-cleq 2449  df-ne 2654
  Copyright terms: Public domain W3C validator