MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neldifsn Unicode version

Theorem neldifsn 4157
Description: is not in . (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsn

Proof of Theorem neldifsn
StepHypRef Expression
1 neirr 2661 . 2
2 eldifsni 4156 . 2
31, 2mto 176 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  e.wcel 1818  =/=wne 2652  \cdif 3472  {csn 4029
This theorem is referenced by:  neldifsnd  4158  fofinf1o  7821  dfac9  8537  xrsupss  11529  fvsetsid  14657  islbs3  17801  islindf4  18873  ufinffr  20430  i1fd  22088  nbgranself2  24436  itg2addnclem  30066  itg2addnclem2  30067  prter2  30622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3478  df-sn 4030
  Copyright terms: Public domain W3C validator