MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neldifsnd Unicode version

Theorem neldifsnd 4158
Description: is not in . Deduction form. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsnd

Proof of Theorem neldifsnd
StepHypRef Expression
1 neldifsn 4157 . 2
21a1i 11 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  e.wcel 1818  \cdif 3472  {csn 4029
This theorem is referenced by:  difsnb  4172  fsnunf2  6110  rpnnen2lem9  13956  ramub1lem1  14544  ramub1lem2  14545  acsfiindd  15807  gsummgp0  17256  islindf4  18873  gsummatr01lem3  19159  onint1  29914  prtlem80  30599  fsumnncl  31572  fsumsplit1  31573  fsumsplitsndif  32346  mgpsumunsn  32951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3478  df-sn 4030
  Copyright terms: Public domain W3C validator