![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > neleq1 | Unicode version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 | |
2 | eqidd 2458 | . 2 | |
3 | 1, 2 | neleq12d 2794 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e/ wnel 2653 |
This theorem is referenced by: neleq12dOLD 2799 ruALT 8049 ssnn0fi 12094 cnpart 13073 sqrmo 13085 resqrtcl 13087 resqrtthlem 13088 sqrtneg 13101 sqreu 13193 sqrtthlem 13195 eqsqrtd 13200 mgmnsgrpex 16049 sgrpnmndex 16050 iccpnfcnv 21444 frgrawopreglem4 25047 xrge0iifcnv 27915 oddinmgm 32503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-cleq 2449 df-clel 2452 df-nel 2655 |
Copyright terms: Public domain | W3C validator |