![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > neleq2 | Unicode version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2458 | . 2 | |
2 | id 22 | . 2 | |
3 | 1, 2 | neleq12d 2794 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e/ wnel 2653 |
This theorem is referenced by: neleq12dOLD 2799 noinfep 8097 isfbas 20330 nbgra0nb 24429 cusgrares 24472 frgrawopreglem4 25047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-cleq 2449 df-clel 2452 df-nel 2655 |
Copyright terms: Public domain | W3C validator |