![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > neleqtrd | Unicode version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neleqtrd.1 | |
neleqtrd.2 |
Ref | Expression |
---|---|
neleqtrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrd.1 | . 2 | |
2 | neleqtrd.2 | . . 3 | |
3 | 2 | eleq2d 2527 | . 2 |
4 | 1, 3 | mtbid 300 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 e. wcel 1818 |
This theorem is referenced by: neleqtrrd 2570 smoord 7055 r1tskina 9181 mreexexlem2d 15042 opptgdim2 24117 ofccat 28497 stoweidlem26 31808 fourierdlem60 31949 fourierdlem61 31950 dochnel 37120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-cleq 2449 df-clel 2452 |
Copyright terms: Public domain | W3C validator |