MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelneq Unicode version

Theorem nelneq 2574
Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
Assertion
Ref Expression
nelneq

Proof of Theorem nelneq
StepHypRef Expression
1 eleq1 2529 . . 3
21biimpcd 224 . 2
32con3dimp 441 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818
This theorem is referenced by:  onfununi  7031  suc11reg  8057  cantnfp1lem3  8120  oemapvali  8124  cantnfp1lem3OLD  8146  mreexmrid  15040  supxrnemnf  27583  xrge0neqmnf  27679  onint1  29914  maxidln0  30442  rencldnfilem  30754  icccncfext  31690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-cleq 2449  df-clel 2452
  Copyright terms: Public domain W3C validator