![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nelneq2 | Unicode version |
Description: A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
nelneq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2530 | . . 3 | |
2 | 1 | biimpcd 224 | . 2 |
3 | 2 | con3dimp 441 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818 |
This theorem is referenced by: ssnelpss 3890 opthwiener 4754 ssfin4 8711 pwxpndom2 9064 fzneuz 11788 hauspwpwf1 20488 vdgr1b 24904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-cleq 2449 df-clel 2452 |
Copyright terms: Public domain | W3C validator |