MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelneq2 Unicode version

Theorem nelneq2 2575
Description: A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nelneq2

Proof of Theorem nelneq2
StepHypRef Expression
1 eleq2 2530 . . 3
21biimpcd 224 . 2
32con3dimp 441 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818
This theorem is referenced by:  ssnelpss  3890  opthwiener  4754  ssfin4  8711  pwxpndom2  9064  fzneuz  11788  hauspwpwf1  20488  vdgr1b  24904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-cleq 2449  df-clel 2452
  Copyright terms: Public domain W3C validator