![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nelprd | Unicode version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
Ref | Expression |
---|---|
nelprd.1 | |
nelprd.2 |
Ref | Expression |
---|---|
nelprd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelprd.1 | . 2 | |
2 | nelprd.2 | . 2 | |
3 | neanior 2782 | . . 3 | |
4 | elpri 4049 | . . . 4 | |
5 | 4 | con3i 135 | . . 3 |
6 | 3, 5 | sylbi 195 | . 2 |
7 | 1, 2, 6 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 { cpr 4031 |
This theorem is referenced by: renfdisj 9668 pmtrprfv3 16479 perfectlem2 23505 usgra2pthlem1 32353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-un 3480 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |