![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nesymi | Unicode version |
Description: Inference associated with nesym 2729. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nesymi.1 |
Ref | Expression |
---|---|
nesymi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 | . . 3 | |
2 | 1 | necomi 2727 | . 2 |
3 | 2 | neii 2656 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 = wceq 1395
=/= wne 2652 |
This theorem is referenced by: recgt0ii 10476 xrltnr 11359 nltmnf 11367 setcepi 15415 pmtrprfval 16512 pmtrprfvalrn 16513 vieta1lem2 22707 usgraedgprv 24376 2trllemA 24552 2pthon 24604 2pthon3v 24606 4cycl4dv 24667 rusgranumwlkl1 24947 frgrareggt1 25116 ballotlemi1 28441 sgnnbi 28484 sgnpbi 28485 plymulx0 28504 sltval2 29416 nosgnn0 29418 wepwsolem 30987 refsum2cnlem1 31412 bj-0nel1 34509 bj-0nelsngl 34529 bj-pr22val 34577 bj-pinftynminfty 34630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-cleq 2449 df-ne 2654 |
Copyright terms: Public domain | W3C validator |