MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf3or Unicode version

Theorem nf3or 1936
Description: If is not free in , , and , it is not free in . (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nf.1
nf.2
nf.3
Assertion
Ref Expression
nf3or

Proof of Theorem nf3or
StepHypRef Expression
1 df-3or 974 . 2
2 nf.1 . . . 4
3 nf.2 . . . 4
42, 3nfor 1935 . . 3
5 nf.3 . . 3
64, 5nfor 1935 . 2
71, 6nfxfr 1645 1
Colors of variables: wff setvar class
Syntax hints:  \/wo 368  \/w3o 972  F/wnf 1616
This theorem is referenced by:  nfso  4811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-or 370  df-3or 974  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator