MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfabd Unicode version

Theorem nfabd 2641
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfabd.1
nfabd.2
Assertion
Ref Expression
nfabd

Proof of Theorem nfabd
StepHypRef Expression
1 nfabd.1 . 2
2 nfabd.2 . . 3
32adantr 465 . 2
41, 3nfabd2 2640 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393  F/wnf 1616  {cab 2442  F/_wnfc 2605
This theorem is referenced by:  nfsbcd  3348  nfcsb1d  3448  nfcsbd  3451  nfifd  3969  nfunid  4256  nfiotad  5559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607
  Copyright terms: Public domain W3C validator