![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfabd2 | Unicode version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfabd2.1 | |
nfabd2.2 |
Ref | Expression |
---|---|
nfabd2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . . . 4 | |
2 | df-clab 2443 | . . . . 5 | |
3 | nfabd2.1 | . . . . . . 7 | |
4 | nfnae 2058 | . . . . . . 7 | |
5 | 3, 4 | nfan 1928 | . . . . . 6 |
6 | nfabd2.2 | . . . . . 6 | |
7 | 5, 6 | nfsbd 2186 | . . . . 5 |
8 | 2, 7 | nfxfrd 1646 | . . . 4 |
9 | 1, 8 | nfcd 2613 | . . 3 |
10 | 9 | ex 434 | . 2 |
11 | nfab1 2621 | . . 3 | |
12 | eqidd 2458 | . . . 4 | |
13 | 12 | drnfc1 2638 | . . 3 |
14 | 11, 13 | mpbiri 233 | . 2 |
15 | 10, 14 | pm2.61d2 160 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 F/ wnf 1616
[ wsb 1739 e. wcel 1818 { cab 2442
F/_ wnfc 2605 |
This theorem is referenced by: nfabd 2641 nfrab 3039 nfixp 7508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |