![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfal | Unicode version |
Description: If is not free in , it is not free in . (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfal.1 |
Ref | Expression |
---|---|
nfal |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 | . . . 4 | |
2 | 1 | nfri 1874 | . . 3 |
3 | 2 | hbal 1844 | . 2 |
4 | 3 | nfi 1623 | 1 |
Colors of variables: wff setvar class |
Syntax hints: A. wal 1393 F/ wnf 1616 |
This theorem is referenced by: nfnf 1949 nfald 1951 nfa2 1953 aaan 1975 pm11.53 1983 19.12vv 1986 cbv3 2015 cbval2 2027 nfsb4t 2130 euf 2292 mo2 2293 2eu3 2379 bm1.1 2440 bm1.1OLD 2441 nfnfc1 2622 nfnfc 2628 nfnfcALT 2629 nfeqOLD 2631 sbcnestgf 3839 dfnfc2 4267 nfdisj 4434 nfdisj1 4435 axrep1 4564 axrep2 4565 axrep3 4566 axrep4 4567 nffr 4858 zfcndrep 9013 zfcndinf 9017 mreexexd 15045 mptelee 24198 mo5f 27383 19.12b 29234 wl-sb8t 30000 wl-mo2t 30020 wl-mo3t 30021 wl-sb8eut 30022 mpt2bi123f 30571 pm11.57 31295 pm11.59 31297 bj-cbv3v 34288 bj-cbv2v 34295 bj-cbval2v 34302 bj-axrep1 34374 bj-axrep2 34375 bj-axrep3 34376 bj-axrep4 34377 ax11-pm2 34409 bj-nfnfc 34429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-11 1842 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |