![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfald | Unicode version |
Description: If is not free in , it is not free in . (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.) |
Ref | Expression |
---|---|
nfald.1 | |
nfald.2 |
Ref | Expression |
---|---|
nfald |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfald.1 | . . 3 | |
2 | nfald.2 | . . 3 | |
3 | 1, 2 | alrimi 1877 | . 2 |
4 | nfnf1 1899 | . . . 4 | |
5 | 4 | nfal 1947 | . . 3 |
6 | hba1 1896 | . . . 4 | |
7 | sp 1859 | . . . . 5 | |
8 | 7 | nfrd 1875 | . . . 4 |
9 | 6, 8 | hbald 1848 | . . 3 |
10 | 5, 9 | nfd 1878 | . 2 |
11 | 3, 10 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
F/ wnf 1616 |
This theorem is referenced by: nfexd 1952 dvelimhw 1955 nfald2 2073 nfeqd 2626 axrepndlem1 8988 axrepndlem2 8989 axunnd 8992 axpowndlem2 8994 axpowndlem2OLD 8995 axpowndlem4 8998 axregndlem2 9001 axinfndlem1 9004 axinfnd 9005 axacndlem4 9009 axacndlem5 9010 axacnd 9011 wl-mo2dnae 30019 wl-mo2t 30020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |