![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfald2 | Unicode version |
Description: Variation on nfald 1951 which adds the hypothesis that and are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfald2.1 | |
nfald2.2 |
Ref | Expression |
---|---|
nfald2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfald2.1 | . . . . 5 | |
2 | nfnae 2058 | . . . . 5 | |
3 | 1, 2 | nfan 1928 | . . . 4 |
4 | nfald2.2 | . . . 4 | |
5 | 3, 4 | nfald 1951 | . . 3 |
6 | 5 | ex 434 | . 2 |
7 | nfa1 1897 | . . 3 | |
8 | biidd 237 | . . . 4 | |
9 | 8 | drnf1 2071 | . . 3 |
10 | 7, 9 | mpbiri 233 | . 2 |
11 | 6, 10 | pm2.61d2 160 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 F/ wnf 1616 |
This theorem is referenced by: nfexd2 2074 dvelimf 2076 nfeud2 2296 nfrald 2842 nfiotad 5559 nfixp 7508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |