![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfand | Unicode version |
Description: If in a context is not free in and , it is not free in . (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfand.1 | |
nfand.2 |
Ref | Expression |
---|---|
nfand |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 371 | . 2 | |
2 | nfand.1 | . . . 4 | |
3 | nfand.2 | . . . . 5 | |
4 | 3 | nfnd 1902 | . . . 4 |
5 | 2, 4 | nfimd 1917 | . . 3 |
6 | 5 | nfnd 1902 | . 2 |
7 | 1, 6 | nfxfrd 1646 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 F/ wnf 1616 |
This theorem is referenced by: nf3and 1926 nfbid 1933 nfeld 2627 nfreud 3030 nfrmod 3031 nfrmo 3033 nfrab 3039 nfifd 3969 nfdisj 4434 dfid3 4801 nfriotad 6265 axrepndlem1 8988 axrepndlem2 8989 axunndlem1 8991 axunnd 8992 axregndlem2 9001 axinfndlem1 9004 axinfnd 9005 axacndlem4 9009 axacndlem5 9010 axacnd 9011 riotasv2d 34688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |