![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfbidf | Unicode version |
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
nfbidf.1 | |
nfbidf.2 |
Ref | Expression |
---|---|
nfbidf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbidf.1 | . . 3 | |
2 | nfbidf.2 | . . . 4 | |
3 | 1, 2 | albid 1885 | . . . 4 |
4 | 2, 3 | imbi12d 320 | . . 3 |
5 | 1, 4 | albid 1885 | . 2 |
6 | df-nf 1617 | . 2 | |
7 | df-nf 1617 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 F/ wnf 1616 |
This theorem is referenced by: drnf2 2072 dvelimdf 2077 nfcjust 2606 nfceqdf 2614 wl-nfimf1 29978 nfbii2 30567 bj-drnf2v 34329 bj-nfcjust 34426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |