MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbidf Unicode version

Theorem nfbidf 1887
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.)
Hypotheses
Ref Expression
nfbidf.1
nfbidf.2
Assertion
Ref Expression
nfbidf

Proof of Theorem nfbidf
StepHypRef Expression
1 nfbidf.1 . . 3
2 nfbidf.2 . . . 4
31, 2albid 1885 . . . 4
42, 3imbi12d 320 . . 3
51, 4albid 1885 . 2
6 df-nf 1617 . 2
7 df-nf 1617 . 2
85, 6, 73bitr4g 288 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  F/wnf 1616
This theorem is referenced by:  drnf2  2072  dvelimdf  2077  nfcjust  2606  nfceqdf  2614  wl-nfimf1  29978  nfbii2  30567  bj-drnf2v  34329  bj-nfcjust  34426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator