![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfbii | Unicode version |
Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 |
Ref | Expression |
---|---|
nfbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbii.1 | . . . 4 | |
2 | 1 | albii 1640 | . . . 4 |
3 | 1, 2 | imbi12i 326 | . . 3 |
4 | 3 | albii 1640 | . 2 |
5 | df-nf 1617 | . 2 | |
6 | df-nf 1617 | . 2 | |
7 | 4, 5, 6 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 F/ wnf 1616 |
This theorem is referenced by: nfxfr 1645 nfxfrd 1646 dvelimhw 1955 nfeqf1 2043 nfceqiOLD 2616 dfnfc2 4267 iunconlem2 33735 bj-nfcf 34492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-nf 1617 |
Copyright terms: Public domain | W3C validator |