![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfcd | Unicode version |
Description: Deduce that a class does not have free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcd.1 | |
nfcd.2 |
Ref | Expression |
---|---|
nfcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcd.1 | . . 3 | |
2 | nfcd.2 | . . 3 | |
3 | 1, 2 | alrimi 1877 | . 2 |
4 | df-nfc 2607 | . 2 | |
5 | 3, 4 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
F/ wnf 1616 e. wcel 1818 F/_ wnfc 2605 |
This theorem is referenced by: nfabd2 2640 dvelimdc 2642 sbnfc2 3854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |