![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfceqi | Unicode version |
Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
nfceqi.1 |
Ref | Expression |
---|---|
nfceqi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1626 | . . 3 | |
2 | nfceqi.1 | . . . 4 | |
3 | 2 | a1i 11 | . . 3 |
4 | 1, 3 | nfceqdf 2614 | . 2 |
5 | 4 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
wtru 1396 F/_ wnfc 2605 |
This theorem is referenced by: nfcxfr 2617 nfcxfrd 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |