MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Unicode version

Theorem nfci 2608
Description: Deduce that a class does not have free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1
Assertion
Ref Expression
nfci
Distinct variable groups:   ,   ,

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2607 . 2
2 nfci.1 . 2
31, 2mpgbir 1622 1
Colors of variables: wff setvar class
Syntax hints:  F/wnf 1616  e.wcel 1818  F/_wnfc 2605
This theorem is referenced by:  nfcii  2609  nfcv  2619  nfab1  2621  nfab  2623  fpwrelmap  27556  esumfzf  28075  climsuse  31614  climinff  31617  bj-nfab1  34371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618
This theorem depends on definitions:  df-bi 185  df-nfc 2607
  Copyright terms: Public domain W3C validator