MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcr Unicode version

Theorem nfcr 2610
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfcr
Distinct variable groups:   ,   ,

Proof of Theorem nfcr
StepHypRef Expression
1 df-nfc 2607 . 2
2 sp 1859 . 2
31, 2sylbi 195 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  F/wnf 1616  e.wcel 1818  F/_wnfc 2605
This theorem is referenced by:  nfcrii  2611  nfcrd  2625  nfnfc  2628  abidnf  3268  csbtt  3445  csbnestgf  3840  bj-nfcrii  34427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nfc 2607
  Copyright terms: Public domain W3C validator