MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrd Unicode version

Theorem nfcrd 2625
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfeqd.1
Assertion
Ref Expression
nfcrd
Distinct variable groups:   ,   ,

Proof of Theorem nfcrd
StepHypRef Expression
1 nfeqd.1 . 2
2 nfcr 2610 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  F/wnf 1616  e.wcel 1818  F/_wnfc 2605
This theorem is referenced by:  nfeqd  2626  nfeld  2627  dvelimdc  2642  nfcsbd  3451  nfifd  3969  axextnd  8987  axrepndlem1  8988  axunndlem1  8991  axregnd  9002  axregndOLD  9003  axextdist  29232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nfc 2607
  Copyright terms: Public domain W3C validator