Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrii Unicode version

Theorem nfcrii 2611
 Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcri.1
Assertion
Ref Expression
nfcrii
Distinct variable group:   ,

Proof of Theorem nfcrii
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfcri.1 . . . 4
2 nfcr 2610 . . . 4
31, 2ax-mp 5 . . 3
43nfri 1874 . 2
54hblem 2580 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  A.wal 1393  F/wnf 1616  e.wcel 1818  F/_wnfc 2605 This theorem is referenced by:  nfcri  2612  cleqf  2646  abeq2f  27398  bnj1230  33861  bnj1000  33999  bnj1204  34068  bnj1307  34079  bnj1311  34080  bnj1398  34090  bnj1466  34109  bnj1467  34110  bnj1523  34127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-cleq 2449  df-clel 2452  df-nfc 2607
 Copyright terms: Public domain W3C validator