Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsb1d Unicode version

Theorem nfcsb1d 3448
 Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfcsb1d.1
Assertion
Ref Expression
nfcsb1d

Proof of Theorem nfcsb1d
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-csb 3435 . 2
2 nfv 1707 . . 3
3 nfcsb1d.1 . . . 4
43nfsbc1d 3345 . . 3
52, 4nfabd 2641 . 2
61, 5nfcxfrd 2618 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  e.wcel 1818  {cab 2442  F/_wnfc 2605  [.wsbc 3327  [_csb 3434 This theorem is referenced by:  nfcsb1  3449 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-sbc 3328  df-csb 3435
 Copyright terms: Public domain W3C validator