![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfcvf | Unicode version |
Description: If and are distinct, then is not free in . (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfcvf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . 2 | |
2 | nfcv 2619 | . 2 | |
3 | id 22 | . 2 | |
4 | 1, 2, 3 | dvelimc 2643 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
A. wal 1393 F/_ wnfc 2605 |
This theorem is referenced by: nfcvf2 2645 nfrald 2842 ralcom2 3022 nfreud 3030 nfrmod 3031 nfrmo 3033 nfdisj 4434 nfcvb 4682 nfiotad 5559 nfriotad 6265 nfixp 7508 axextnd 8987 axrepndlem2 8989 axrepnd 8990 axunndlem1 8991 axunnd 8992 axpowndlem2 8994 axpowndlem2OLD 8995 axpowndlem4 8998 axregndlem2 9001 axregnd 9002 axregndOLD 9003 axinfndlem1 9004 axinfnd 9005 axacndlem4 9009 axacndlem5 9010 axacnd 9011 axextdist 29232 bj-nfcsym 34460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |