![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfcvf2 | Unicode version |
Description: If and are distinct, then is not free in . (Contributed by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
nfcvf2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvf 2644 | . 2 | |
2 | 1 | naecoms 2053 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
A. wal 1393 F/_ wnfc 2605 |
This theorem is referenced by: dfid3 4801 oprabid 6323 axrepndlem1 8988 axrepndlem2 8989 axrepnd 8990 axunnd 8992 axpowndlem2OLD 8995 axpowndlem3 8996 axpowndlem3OLD 8997 axpowndlem4 8998 axpownd 8999 axregndlem2 9001 axinfndlem1 9004 axinfnd 9005 axacndlem4 9009 axacndlem5 9010 axacnd 9011 bj-nfcsym 34460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |