Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf2 Unicode version

Theorem nfcvf2 2645
 Description: If and are distinct, then is not free in . (Contributed by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
nfcvf2

Proof of Theorem nfcvf2
StepHypRef Expression
1 nfcvf 2644 . 2
21naecoms 2053 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  A.wal 1393  F/_wnfc 2605 This theorem is referenced by:  dfid3  4801  oprabid  6323  axrepndlem1  8988  axrepndlem2  8989  axrepnd  8990  axunnd  8992  axpowndlem2OLD  8995  axpowndlem3  8996  axpowndlem3OLD  8997  axpowndlem4  8998  axpownd  8999  axregndlem2  9001  axinfndlem1  9004  axinfnd  9005  axacndlem4  9009  axacndlem5  9010  axacnd  9011  bj-nfcsym  34460 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-cleq 2449  df-clel 2452  df-nfc 2607
 Copyright terms: Public domain W3C validator