MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcxfrd Unicode version

Theorem nfcxfrd 2618
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfceqi.1
nfcxfrd.2
Assertion
Ref Expression
nfcxfrd

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2
2 nfceqi.1 . . 3
32nfceqi 2615 . 2
41, 3sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  F/_wnfc 2605
This theorem is referenced by:  nfcsb1d  3448  nfcsbd  3451  nfifd  3969  nfunid  4256  nfiotad  5559  nfriotad  6265  nfovd  6321  nfnegd  9838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-cleq 2449  df-clel 2452  df-nfc 2607
  Copyright terms: Public domain W3C validator