![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfcxfrd | Unicode version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 | |
nfcxfrd.2 |
Ref | Expression |
---|---|
nfcxfrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfrd.2 | . 2 | |
2 | nfceqi.1 | . . 3 | |
3 | 2 | nfceqi 2615 | . 2 |
4 | 1, 3 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
F/_ wnfc 2605 |
This theorem is referenced by: nfcsb1d 3448 nfcsbd 3451 nfifd 3969 nfunid 4256 nfiotad 5559 nfriotad 6265 nfovd 6321 nfnegd 9838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |