MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfd Unicode version

Theorem nfd 1878
Description: Deduce that is not free in in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfd.1
nfd.2
Assertion
Ref Expression
nfd

Proof of Theorem nfd
StepHypRef Expression
1 nfd.1 . . 3
2 nfd.2 . . 3
31, 2alrimi 1877 . 2
4 df-nf 1617 . 2
53, 4sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  F/wnf 1616
This theorem is referenced by:  nfdh  1879  nfnt  1900  ax16nf  1944  nfald  1951  dvelimhw  1955  cbv1h  2018  nfeqf  2045  ax16nfALT  2065  nfsb2  2100  copsexgOLD  4738  distel  29236  wl-ax11-lem3  30027  bj-cbv1hv  34293  bj-ax16nf  34324  bj-nfsb2v  34340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator