MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdi Unicode version

Theorem nfdi 1916
Description: Since the converse holds by a1i 11, this inference shows that we can represent a not-free hypothesis with either (inference form) or (deduction form). (Contributed by NM, 17-Aug-2018.) (Proof shortened by Wolf Lammen, 10-Jul-2019.)
Hypothesis
Ref Expression
nfdi.1
Assertion
Ref Expression
nfdi

Proof of Theorem nfdi
StepHypRef Expression
1 nfdi.1 . . . 4
21nfrd 1875 . . 3
32pm2.43i 47 . 2
43nfi 1623 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  F/wnf 1616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator