![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfel | Unicode version |
Description: Hypothesis builder for elementhood. (Contributed by NM, 1-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
nfnfc.1 | |
nfeq.2 |
Ref | Expression |
---|---|
nfel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnfc.1 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | nfeq.2 | . . . 4 | |
4 | 3 | a1i 11 | . . 3 |
5 | 2, 4 | nfeld 2627 | . 2 |
6 | 5 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wtru 1396 F/ wnf 1616 e. wcel 1818
F/_ wnfc 2605 |
This theorem is referenced by: nfel1 2635 nfel2 2637 nfnel 2800 elabgf 3244 elrabf 3255 sbcel12 3823 sbcel12gOLD 3824 rabxfrd 4673 ffnfvf 6058 mptelixpg 7526 ac6num 8880 ptcldmpt 20115 prdsdsf 20870 prdsxmet 20872 rmo4fOLD 27395 ssiun2sf 27427 funcnv4mpt 27512 ptrest 30048 aomclem8 31007 elunif 31391 rspcegf 31398 fsumsplit1 31573 fproddivf 31588 fprodsplit1f 31593 climsuse 31614 fprodcncf 31704 dvmptmulf 31734 dvnmptdivc 31735 dvnmul 31740 dvmptfprodlem 31741 dvmptfprod 31742 dvnprodlem1 31743 dvnprodlem2 31744 stoweidlem59 31841 fourierdlem31 31920 nfdfat 32215 bnj1491 34113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |