![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfelOLD | Unicode version |
Description: Obsolete proof of nfel 2632 as of 16-Nov-2019. (Contributed by NM, 1-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nfnfc.1 | |
nfeq.2 |
Ref | Expression |
---|---|
nfelOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2452 | . 2 | |
2 | nfcv 2619 | . . . . 5 | |
3 | nfnfc.1 | . . . . 5 | |
4 | 2, 3 | nfeq 2630 | . . . 4 |
5 | nfeq.2 | . . . . 5 | |
6 | 5 | nfcri 2612 | . . . 4 |
7 | 4, 6 | nfan 1928 | . . 3 |
8 | 7 | nfex 1948 | . 2 |
9 | 1, 8 | nfxfr 1645 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
E. wex 1612 F/ wnf 1616 e. wcel 1818
F/_ wnfc 2605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |