![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfeq1 | Unicode version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 |
Ref | Expression |
---|---|
nfeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 | |
2 | nfcv 2619 | . 2 | |
3 | 1, 2 | nfeq 2630 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 F/ wnf 1616
F/_ wnfc 2605 |
This theorem is referenced by: euabsn 4102 disjxun 4450 reusv6OLD 4663 opabiotafun 5934 fvmptt 5971 eusvobj2 6289 oprabv 6345 ovmpt2dv2 6436 ov3 6439 dom2lem 7575 pwfseqlem2 9058 fsumf1o 13545 isummulc2 13577 fsum00 13612 isumshft 13651 zprod 13744 fprodf1o 13753 prodss 13754 iserodd 14359 yonedalem4b 15545 gsum2d2lem 17001 gsummptnn0fz 17014 gsummoncoe1 18346 elptr2 20075 ovoliunnul 21918 mbfinf 22072 itg2splitlem 22155 dgrle 22640 disjabrex 27443 disjabrexf 27444 disjunsn 27453 voliune 28201 volfiniune 28202 finminlem 30136 eq0rabdioph 30710 monotoddzz 30879 cncfiooicclem1 31696 stoweidlem28 31810 stoweidlem48 31830 stoweidlem58 31840 etransclem32 32049 bnj958 33998 bnj1491 34113 cdleme43fsv1snlem 36146 ltrniotaval 36307 cdlemksv2 36573 cdlemkuv2 36593 cdlemk36 36639 cdlemkid 36662 cdlemk19x 36669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |