![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfeqf | Unicode version |
Description: A variable is effectively
not free in an equality if it is not either of
the involved variables. F/ version of ax-c9 2221. (Contributed by
Mario Carneiro, 6-Oct-2016.) Remove dependency on ax-11 1842. (Revised
by Wolf Lammen, 6-Sep-2018.) |
Ref | Expression |
---|---|
nfeqf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfna1 1903 | . . 3 | |
2 | nfna1 1903 | . . 3 | |
3 | 1, 2 | nfan 1928 | . 2 |
4 | equviniv 1803 | . . 3 | |
5 | dveeq1 2044 | . . . . . . . 8 | |
6 | 5 | imp 429 | . . . . . . 7 |
7 | dveeq1 2044 | . . . . . . . 8 | |
8 | 7 | imp 429 | . . . . . . 7 |
9 | equtr2 1802 | . . . . . . . 8 | |
10 | 9 | alanimi 1637 | . . . . . . 7 |
11 | 6, 8, 10 | syl2an 477 | . . . . . 6 |
12 | 11 | an4s 826 | . . . . 5 |
13 | 12 | ex 434 | . . . 4 |
14 | 13 | exlimdv 1724 | . . 3 |
15 | 4, 14 | syl5 32 | . 2 |
16 | 3, 15 | nfd 1878 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 E. wex 1612
F/ wnf 1616 |
This theorem is referenced by: axc9 2046 dvelimf 2076 equveli 2088 equveliOLD 2089 2ax6elem 2193 wl-exeq 29987 wl-nfeqfb 29990 wl-equsb4 30005 wl-2sb6d 30008 wl-sbalnae 30012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |