MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqf1 Unicode version

Theorem nfeqf1 2043
Description: An equation between setvar is free of any other setvar. (Contributed by Wolf Lammen, 10-Jun-2019.)
Assertion
Ref Expression
nfeqf1
Distinct variable group:   ,

Proof of Theorem nfeqf1
StepHypRef Expression
1 nfeqf2 2041 . 2
2 equcom 1794 . . 3
32nfbii 1644 . 2
41, 3sylib 196 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393  F/wnf 1616
This theorem is referenced by:  dveeq1  2044  sbal2  2205  nfeud2  2296  wl-mo2dnae  30019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator