Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqf2 Unicode version

Theorem nfeqf2 2041
 Description: An equation between setvar is free of any other setvar. (Contributed by Wolf Lammen, 9-Jun-2019.)
Assertion
Ref Expression
nfeqf2
Distinct variable group:   ,

Proof of Theorem nfeqf2
StepHypRef Expression
1 exnal 1648 . 2
2 nfnf1 1899 . . 3
3 axc9lem2 2040 . . . . 5
4 axc9lem1 2001 . . . . 5
53, 4syld 44 . . . 4
6 nf2 1960 . . . 4
75, 6sylibr 212 . . 3
82, 7exlimi 1912 . 2
91, 8sylbir 213 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  A.wal 1393  E.wex 1612  F/wnf 1616 This theorem is referenced by:  dveeq2  2042  nfeqf1  2043  sbal1  2204  copsexg  4737  axrepndlem1  8988  axpowndlem2  8994  axpowndlem3  8996  wl-equsb3  30004  wl-sbcom2d-lem1  30009  wl-mo2dnae  30019 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
 Copyright terms: Public domain W3C validator