MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeud2 Unicode version

Theorem nfeud2 2296
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by Wolf Lammen, 4-Oct-2018.)
Hypotheses
Ref Expression
nfeud2.1
nfeud2.2
Assertion
Ref Expression
nfeud2

Proof of Theorem nfeud2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-eu 2286 . 2
2 nfv 1707 . . 3
3 nfeud2.1 . . . 4
4 nfeud2.2 . . . . 5
5 nfeqf1 2043 . . . . . 6
65adantl 466 . . . . 5
74, 6nfbid 1933 . . . 4
83, 7nfald2 2073 . . 3
92, 8nfexd 1952 . 2
101, 9nfxfrd 1646 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612  F/wnf 1616  E!weu 2282
This theorem is referenced by:  nfmod2  2297  nfeud  2298  nfreud  3030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-eu 2286
  Copyright terms: Public domain W3C validator