![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfeud2 | Unicode version |
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by Wolf Lammen, 4-Oct-2018.) |
Ref | Expression |
---|---|
nfeud2.1 | |
nfeud2.2 |
Ref | Expression |
---|---|
nfeud2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2286 | . 2 | |
2 | nfv 1707 | . . 3 | |
3 | nfeud2.1 | . . . 4 | |
4 | nfeud2.2 | . . . . 5 | |
5 | nfeqf1 2043 | . . . . . 6 | |
6 | 5 | adantl 466 | . . . . 5 |
7 | 4, 6 | nfbid 1933 | . . . 4 |
8 | 3, 7 | nfald2 2073 | . . 3 |
9 | 2, 8 | nfexd 1952 | . 2 |
10 | 1, 9 | nfxfrd 1646 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 F/ wnf 1616 E! weu 2282 |
This theorem is referenced by: nfmod2 2297 nfeud 2298 nfreud 3030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-eu 2286 |
Copyright terms: Public domain | W3C validator |