![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfexd | Unicode version |
Description: If is not free in , it is not free in . (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfald.1 | |
nfald.2 |
Ref | Expression |
---|---|
nfexd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1613 | . 2 | |
2 | nfald.1 | . . . 4 | |
3 | nfald.2 | . . . . 5 | |
4 | 3 | nfnd 1902 | . . . 4 |
5 | 2, 4 | nfald 1951 | . . 3 |
6 | 5 | nfnd 1902 | . 2 |
7 | 1, 6 | nfxfrd 1646 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
A. wal 1393 E. wex 1612 F/ wnf 1616 |
This theorem is referenced by: nfeud2 2296 nfeld 2627 axrepndlem1 8988 axrepndlem2 8989 axunndlem1 8991 axunnd 8992 axpowndlem2 8994 axpowndlem2OLD 8995 axpowndlem3 8996 axpowndlem3OLD 8997 axpowndlem4 8998 axregndlem2 9001 axinfndlem1 9004 axinfnd 9005 axacndlem4 9009 axacndlem5 9010 axacnd 9011 19.9d2rf 27377 hbexg 33329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |