![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nffr | Unicode version |
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | |
nffr.a |
Ref | Expression |
---|---|
nffr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fr 4843 | . 2 | |
2 | nfcv 2619 | . . . . . 6 | |
3 | nffr.a | . . . . . 6 | |
4 | 2, 3 | nfss 3496 | . . . . 5 |
5 | nfv 1707 | . . . . 5 | |
6 | 4, 5 | nfan 1928 | . . . 4 |
7 | nfcv 2619 | . . . . . . . 8 | |
8 | nffr.r | . . . . . . . 8 | |
9 | nfcv 2619 | . . . . . . . 8 | |
10 | 7, 8, 9 | nfbr 4496 | . . . . . . 7 |
11 | 10 | nfn 1901 | . . . . . 6 |
12 | 2, 11 | nfral 2843 | . . . . 5 |
13 | 2, 12 | nfrex 2920 | . . . 4 |
14 | 6, 13 | nfim 1920 | . . 3 |
15 | 14 | nfal 1947 | . 2 |
16 | 1, 15 | nfxfr 1645 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 F/ wnf 1616
F/_ wnfc 2605
=/= wne 2652 A. wral 2807 E. wrex 2808
C_ wss 3475 c0 3784 class class class wbr 4452
Fr wfr 4840 |
This theorem is referenced by: nfwe 4860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-fr 4843 |
Copyright terms: Public domain | W3C validator |