![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nffvd | Unicode version |
Description: Deduction version of bound-variable hypothesis builder nffv 5878. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nffvd.2 | |
nffvd.3 |
Ref | Expression |
---|---|
nffvd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfaba1 2624 | . . 3 | |
2 | nfaba1 2624 | . . 3 | |
3 | 1, 2 | nffv 5878 | . 2 |
4 | nffvd.2 | . . 3 | |
5 | nffvd.3 | . . 3 | |
6 | nfnfc1 2622 | . . . . 5 | |
7 | nfnfc1 2622 | . . . . 5 | |
8 | 6, 7 | nfan 1928 | . . . 4 |
9 | abidnf 3268 | . . . . . 6 | |
10 | 9 | adantr 465 | . . . . 5 |
11 | abidnf 3268 | . . . . . 6 | |
12 | 11 | adantl 466 | . . . . 5 |
13 | 10, 12 | fveq12d 5877 | . . . 4 |
14 | 8, 13 | nfceqdf 2614 | . . 3 |
15 | 4, 5, 14 | syl2anc 661 | . 2 |
16 | 3, 15 | mpbii 211 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 { cab 2442 F/_ wnfc 2605
` cfv 5593 |
This theorem is referenced by: nfovd 6321 nfixp 7508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-iota 5556 df-fv 5601 |
Copyright terms: Public domain | W3C validator |