![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfif | Unicode version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | |
nfif.2 | |
nfif.3 |
Ref | Expression |
---|---|
nfif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | nfif.2 | . . . 4 | |
4 | 3 | a1i 11 | . . 3 |
5 | nfif.3 | . . . 4 | |
6 | 5 | a1i 11 | . . 3 |
7 | 2, 4, 6 | nfifd 3969 | . 2 |
8 | 7 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wtru 1396 F/ wnf 1616 F/_ wnfc 2605
if cif 3941 |
This theorem is referenced by: csbif 3991 csbifgOLD 3992 nfop 4233 nfrdg 7099 boxcutc 7532 nfoi 7960 nfsum1 13512 nfsum 13513 summolem2a 13537 zsum 13540 sumss 13546 sumss2 13548 fsumcvg2 13549 nfcprod 13718 cbvprod 13722 prodmolem2a 13741 zprod 13744 fprod 13748 fprodntriv 13749 prodss 13754 pcmpt 14411 pcmptdvds 14413 gsummpt1n0 16992 madugsum 19145 mbfpos 22058 mbfposb 22060 i1fposd 22114 isibl2 22173 nfitg 22181 cbvitg 22182 itgss3 22221 itgcn 22249 limcmpt 22287 rlimcnp2 23296 chirred 27314 refsum2cn 31413 ssfiunibd 31509 icccncfext 31690 fourierdlem86 31975 nfafv 32221 cdleme31sn 36106 cdleme32d 36170 cdleme32f 36172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-if 3942 |
Copyright terms: Public domain | W3C validator |