![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfifd | Unicode version |
Description: Deduction version of nfif 3970. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfifd.2 | |
nfifd.3 | |
nfifd.4 |
Ref | Expression |
---|---|
nfifd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif2 3943 | . 2 | |
2 | nfv 1707 | . . 3 | |
3 | nfifd.4 | . . . . . 6 | |
4 | 3 | nfcrd 2625 | . . . . 5 |
5 | nfifd.2 | . . . . 5 | |
6 | 4, 5 | nfimd 1917 | . . . 4 |
7 | nfifd.3 | . . . . . 6 | |
8 | 7 | nfcrd 2625 | . . . . 5 |
9 | 8, 5 | nfand 1925 | . . . 4 |
10 | 6, 9 | nfimd 1917 | . . 3 |
11 | 2, 10 | nfabd 2641 | . 2 |
12 | 1, 11 | nfcxfrd 2618 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
F/ wnf 1616 e. wcel 1818 { cab 2442
F/_ wnfc 2605
if cif 3941 |
This theorem is referenced by: nfif 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-if 3942 |
Copyright terms: Public domain | W3C validator |