![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfint | Unicode version |
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
nfint.1 |
Ref | Expression |
---|---|
nfint |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 4288 | . 2 | |
2 | nfint.1 | . . . 4 | |
3 | nfv 1707 | . . . 4 | |
4 | 2, 3 | nfral 2843 | . . 3 |
5 | 4 | nfab 2623 | . 2 |
6 | 1, 5 | nfcxfr 2617 | 1 |
Colors of variables: wff setvar class |
Syntax hints: { cab 2442 F/_ wnfc 2605
A. wral 2807 |^| cint 4286 |
This theorem is referenced by: onminsb 6634 oawordeulem 7222 nnawordex 7305 rankidb 8239 cardmin2 8400 cardaleph 8491 cardmin 8960 sltval2 29416 nobndlem5 29456 aomclem8 31007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-int 4287 |
Copyright terms: Public domain | W3C validator |