Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotad Unicode version

 Description: Deduction version of nfiota 5560. (Contributed by NM, 18-Feb-2013.)
Hypotheses
Ref Expression
Assertion
Ref Expression

Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5557 . 2
2 nfv 1707 . . . 4
3 nfiotad.1 . . . . 5
4 nfiotad.2 . . . . . . 7
54adantr 465 . . . . . 6
6 nfcvf 2644 . . . . . . . 8
76adantl 466 . . . . . . 7
8 nfcvd 2620 . . . . . . 7
97, 8nfeqd 2626 . . . . . 6
105, 9nfbid 1933 . . . . 5
113, 10nfald2 2073 . . . 4
122, 11nfabd 2641 . . 3
1312nfunid 4256 . 2
141, 13nfcxfrd 2618 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  F/wnf 1616  {cab 2442  F/_wnfc 2605  U.cuni 4249  iotacio 5554 This theorem is referenced by:  nfiota  5560  nfriotad  6265 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-sn 4030  df-uni 4250  df-iota 5556
 Copyright terms: Public domain W3C validator