![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfixp1 | Unicode version |
Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfixp1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 7490 | . 2 | |
2 | nfcv 2619 | . . . . 5 | |
3 | nfab1 2621 | . . . . 5 | |
4 | 2, 3 | nffn 5682 | . . . 4 |
5 | nfra1 2838 | . . . 4 | |
6 | 4, 5 | nfan 1928 | . . 3 |
7 | 6 | nfab 2623 | . 2 |
8 | 1, 7 | nfcxfr 2617 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 e. wcel 1818
{ cab 2442 F/_ wnfc 2605 A. wral 2807
Fn wfn 5588 ` cfv 5593 X_ cixp 7489 |
This theorem is referenced by: ixpiunwdom 8038 ptbasfi 20082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-fun 5595 df-fn 5596 df-ixp 7490 |
Copyright terms: Public domain | W3C validator |