Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpt21 Unicode version

Theorem nfmpt21 6364
 Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpt21

Proof of Theorem nfmpt21
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-mpt2 6301 . 2
2 nfoprab1 6346 . 2
31, 2nfcxfr 2617 1
 Colors of variables: wff setvar class Syntax hints:  /\wa 369  =wceq 1395  e.wcel 1818  F/_wnfc 2605  {coprab 6297  e.cmpt2 6298 This theorem is referenced by:  ovmpt2s  6426  ov2gf  6427  ovmpt2dxf  6428  ovmpt2df  6434  ovmpt2dv2  6436  xpcomco  7627  mapxpen  7703  pwfseqlem2  9058  pwfseqlem4a  9060  pwfseqlem4  9061  gsum2d2lem  17001  gsum2d2  17002  gsumcom2  17003  dprd2d2  17093  cnmpt21  20172  cnmpt2t  20174  cnmptcom  20179  cnmpt2k  20189  xkocnv  20315  fmuldfeqlem1  31576  fmuldfeq  31577  ovmpt2rdxf  32928 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-oprab 6300  df-mpt2 6301
 Copyright terms: Public domain W3C validator