![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nfnan | Unicode version |
Description: If is not free in and , then it is not free in . (Contributed by Scott Fenton, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfan.1 | |
nfan.2 |
Ref | Expression |
---|---|
nfnan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nan 1344 | . 2 | |
2 | nfan.1 | . . . 4 | |
3 | nfan.2 | . . . 4 | |
4 | 2, 3 | nfan 1928 | . . 3 |
5 | 4 | nfn 1901 | . 2 |
6 | 1, 5 | nfxfr 1645 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 /\ wa 369
-/\ wnan 1343
F/ wnf 1616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-nan 1344 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |