MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnan Unicode version

Theorem nfnan 1929
Description: If is not free in and , then it is not free in . (Contributed by Scott Fenton, 2-Jan-2018.)
Hypotheses
Ref Expression
nfan.1
nfan.2
Assertion
Ref Expression
nfnan

Proof of Theorem nfnan
StepHypRef Expression
1 df-nan 1344 . 2
2 nfan.1 . . . 4
3 nfan.2 . . . 4
42, 3nfan 1928 . . 3
54nfn 1901 . 2
61, 5nfxfr 1645 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  /\wa 369  -/\wnan 1343  F/wnf 1616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-nan 1344  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator